| При выборе конфигрурации двигателя в процессе увеличения его рабочего объема выбирают между "длинноходным" и "короткоходным" вариантами, определяющими, какой из параметров - ход поршня ("длинноходный" вариант) или диаметр цилиндра ("короткоходный" вариант) преимущественно будет увеличиваться. При этом не следует забывать, что рабочий объем двигателя влияет не только на величину максимальной мощности, но и на то, при каких оборотах будут получены максимальные значения мощности и крутящего момента. В общем случае, при увеличении хода поршня максимальные значения мощности и крутящего момента достигаются при меньших значениях оборотов двигателя. К тому же, более "длинноходный" двигатель обеспечивает меньшее значение максимальной мощности, но большее значение крутящего момента по сравнению с "короткоходным". "Короткоходные" двигатели при этом достигают максимальной мощности при более высоких оборотах и при том же рабочем объеме развивают большую мощность, но почти всегда это сопровождается меньшими значениями крутящего момента на низких оборотах [19] . В разное время преобладали различные тенденции при увеличении рабочего объема двигателей. Так, в 70-х годах был разработан и прошел полный цикл испытаний "короткоходный" двигатель УЗАМ-327 рабочим объемом 1.7 л. По ряду причин этот двигатель не был запущен в производство, а позже появился более "длинноходный" вариант двигателя с рабочим объемом 1.7 с индексом 3317, выпускавшийся с двумя вариантами поршней - первоначально с поршнями, имеющими клиновидную поверхность без проточек и уникальной головкой блока цилиндров, а позже - с поршнями с поверхностью в форме усеченных конусов с проточками под клапана, рассчитанный на унифицированную головку блока цилиндров. Конструкция поршней в этих разновидностях двигателя невзаимозаменяема и поршни старой конструкции могут использоваться только с уникальной головкой блока цилиндров и не могут использоваться с унифицированной головкой. Выбор поршней при форсировании двигателя В случае увеличения рабочего объема двигателя с получением "стандартных" вариантов (например, при переходе на следующий уровень двигателей УЗАМ) есть возможность использования стандартных поршней. Разновес поршней в одном двигателе не должен превышать 3 г, стандартные поршни подразделяются на 4 весовых группы, номер которой выбит на днище поршня. Для поршней, поставляемых в з/ч, вместо номера группы указывается непосредственно масса поршня в граммах. Однако для реализации нестандартных вариантов встает вопрос изготовления нестандартных поршней. Обычно такие поршни изготавливают специализированные фирмы (например, фирма "Автотехнология") методом ковки или изотермической штамповки. При этом выбирают между стандартными (литыми) и штампованными поршнями. Бытует мнение о неоспоримых преимуществах кованых поршней, однако это не совсем так. В стандартных и умеренно-форсированных двигателях литые поршни обеспечивают большую мощность, чем кованые [19]. Происходит это по следующим причинам: - литые поршни имеют имеют меньший износ канавок для поршневых колец и очень малую теплопроводность, оставляя больше тепла в камере сгорания, что улучшает термический КПД двигателя; - литые поршни обеспечивают меньший зазор в цилиндре и обеспечивают более стабильное положение поршневых колец; - литые поршни в большинстве случаев легче кованых; - литые поршни имеют существенно меньшую стоимость. Для двигателей повседневного применения литые поршни более предпочтительны. Лишь при работе двигателя постоянно при высоких нагрузках и повышенной температуре предпочтительнее использование кованых поршней [19]. Если удельная мощность и другие особенности конструкции двигателя, например, уникальный размер, форма или положение относительно поршневого пальца, требуют применения кованого поршня, необходимо обеспечить требуемый рабочий зазор между поршнем и стенкой цилиндра, что для кованых поршней является технически непростой задачей в связи с тем, что зачастую кованые поршни изготавливаются из сплавов с высоким коэффициентом термического расширения. Такие поршни будут обладать стабильными характеристиками при высоких температурах и больших оборотах, но в обычном режиме движения их показатели невысоки - поршни, имеющие большие зазары между поршнем и стенками цилиндра в холодном двигателе, отрицательно влияют на топливную экономичность и увеличивают расход масла и токсичность выхлопных газов [19]. При выборе поршня необходимо обеспечить возможно меньший зазор у его юбки при всех, а не только "щадящих" условиях эксплуатации. Чем больше термическая стабильность сплава материала поршня, тем меньше поршень будет расширяться при нагревании и тем меньше будет минимально гарантированный зазор между поршнем и стенкой цилиндра. Для продления срока службы поршней иногда применяют их покрытие специальными материалами - твердыми молекулярными покрытиями или керамикой. Получение твердого молекулярного покрытия подобно процессу металлизации. Такие покрытия имеют очень жесткую поверхность, которая хорошо отражает тепло. Керамика же поглощает тепло, но только в слоях, близких к поверхности. Эти слои в конечном счете действуют как очень эффективные изоляторы, удерживая тепло и предотвращая его проникновение в материал поршня. Нанесение керамического покрытия на верхнюю часть поршня предотвращает поглощение тепла головкой поршня. Непоглощенное тепло удерживается в камере сгорания и увеличивает давление газов, повышая термический КПД двигателя. Покрытие днища поршня способствует увеличению мощности двигателя на 4-8% [19]. Кроме того, головка поршня с покрытием намного меньше чуствительна к тепловыделению, вызванному детонацией. Немаловажное значение имеет также форма поршня. Поршни с плоским днищем обеспечивают лучший фронт пламени в камере сгорания, чем поршни с выпуклым или вогнутым днищем. Подбор поршневых колец Особое внимание следует уделить подбору поршневых колец для форсируемого двигателя. Общим направлением в конструкциях высококачественных поршней является использование узких поршневых колец. Считается, что тонкое кольцо предотвращает вибрацию колец на высоких оборотах и уменьшает трение в цилиндре. Однако при этом тонкие кольца вследствие меньшей поверхности соприкосновения со стенкой цилиндра оказывают на стенки большее давление, такие кольца вызывают ускоренный износ цилиндров и самих колец. Поэтому если двигатель не используется преимущественно при оборотах более 6000 1/мин, предпочтительнее использовать широкие кольца. Практически улучшение характеристик двигателя при использовании тонких колец столь невелико, что может быть обнаружено только на испытательном стенде или при большом количестве испытательных заездов [19]. При изготовлении поршней важно также положение поршневых колец в поршне, особенно положение верхнего кольца. Если верхнее кольцо расположено высоко на поршне около его верхней части, характеристики двигателя будут лучшими вследствие того, что меньший объем недоступных газов будет захвачен в перемычке между кольцами. Однако если кольцо расположено слишком близко к верхней части поршня, то тонкая перемычка над канавкой кольца может перегреться и разрушиться, так как верхнее поршневое кольцо и перемычка над ним работают в очень жестких условиях. Верхнее кольцо не только должно обеспечивать качественное уплотнение у рабочих поверхностей при очень высоких температурах, но и работает в окружении высокотемпературных газов, сохраняя свою упругость и хорошее уплотнение, что определяет технологию производства и металлургические особенности колец [19]. Материал кольца должен иметь низкий коэффициент трения, хорошие характеристики против заедания и низкий коэффициент износа. Одним из первых эффективных материалов, используемых для поршневых колец, был ковкий чугун. Он хорошо сочетается с характеристиками чугуна, используемого в блоке цилиндров, а его пористая структура хорошо удерживает масло, уменьшая износ. Широко также применяется его разновидность - пластичный чугун, обладающий большинством качеств чугуна и кроме того может гнуться, что упрощает установку колец. В форсированных двигателях применяются более сложные по конструкции кольца. Первоначально на чугунные кольца наносился слой хрома, помогающий противостоять истиранию и заеданию даже при очень высоких температурах и больших давлениях, к тому же обеспечивающий очень высокую износоустойчивость. Недостатком хромированных колец является их очень высокая твердость - необходимо очень точно выдержать размеры цилиндра для нормальной работы таких колец. Позже стали применять кольца из нержавеющей стали - в этот материал входит большое количество хрома, поэтому кольца из нержавеющей стали обладают большинством свойств хромированных чугунных колец [19]. Нержавеющая сталь противостоит высокой температуре лучше, чм хромированный чугун. Для увеличения срока службы колец и обеспечения их быстрой приработки появились молибденовые кольца - кольцо с основой из чугуна с молибденовым покрытием. Молибден обладает противоизносными слоями хрома и зачастую превосходит их, эти кольца долговечнее, легко прирабатываются, более надежны. В настоящее время молибденовые кольца наиболее широко применяются в форсированных двигателях. Существуют также керамические поршневые кольца из твердого и износостойкого неметаллического материала, однако их применение в двигателях пока сталкивается с трудностями сопряжения таких колец со стенками цилиндра, эта технология в настоящий момент находится в стадии развития. Кроме материала поршневого кольца важное значение имеет его конструкция. Например, кольцо может иметь преднамеренное небольшое перекручивание, т.е. верхняя и нижняя поверхности кольца не лежат плоско в канавке, а слегка наклонены, и только верхний или нижний край рабочей поверхности кольца контактирует с отверстием цилиндра. Кольца сконструированы таким образом, чтобы ускорить приработку поверхностей поршневых колец и стенок цилиндров и помогать уплотнению кольца в верхней и нижней частях канавки. Величина перекручивания кольца очень незначительна и обычно получается путем стачивания фаски на внутреннем крае кольца. Фаска уменьшает небольшие напряжения вдоль внутреннего края и позволяет кольцу неравномерно ослабиться, приводя к его незначительной деформации, вызывающей требуемое перекручивание [19]. Для улучшения уплотнения цилиндров от повышенного давления газов также применяют сверление в верхней части поршня ряда очень мелких отверстий, доходящих до внутренней части канавки верхнего компрессионного кольца. Когда в цилиндре появляется давление, газы проходят через эти каналы и прижимают верхнее компрессионное кольцо к стенке цилиндра, обеспечивая очень хорошее уплотнение, но увеличивая износ цилиндра в его верхней части. Однако при этом весьма значительно увеличивается трение колец о стенки цилиндра, что приводит к дополнительным потерям. Второе компрессионное кольцо обеспечивает дополнительное уплотнение для газов, прошедших через верхнее кольцо, поэтому их рабочие давление и температура существенно меньше, и, как следствие, требования к материалам их изготовления существенно ниже. Однако второе кольцо имеет важную дополнительную функцию - помогает маслосъемному кольцу, действуя как "скребок", предотвращая попадание масла в камеру сгорания и возникновение детонации. Иногда эти кольца спесиально делают скошенными, так, чтобы скос был меньше у верхнего края кольца, что помогает работе маслосъемного кольца - такое кольцо будет двигаться поверх масла при движении поршня вверх и будет удалять его при движении вниз. Нередко применяют вторые компрессионные кольца без зазора, точнее - с очень маленьким зазором - при их использовании двигатель быстрее прирабатывается и выдает несколько большую мощность, так как предотвращает потери мощности за счет уменьшения прорыва картерных газов [19]. Важное значение также имеет конструкция маслосъемного кольца. Моторное масло, остающееся в камере сгорания, уменьшает октановое число топлива, что может приводить к детонации, а также приводит к образованию нагара в камере сгорания и на днище поршня, что вызывает снижение мощности двигателя. Хорошее маслосъемное кольцо поддерживает свои верхнюю и нижнюю кромки центральным разделителем. В дешевых кольцах используются волнообразные разделители верхней и нижней кромок, однако это не обеспечивает правильного положения кромок - при увеличении оборотов двигателя силы инерции стремятся распрямить волнообразный разделитель и кольцо вкручивается внутрь канавки, а масло проходит поверх кромок. Подбор шатунов Обычно при форсировании двигателя используют стандартные для данной модели двигателя шатуны. Однако необходимо оценить их состояние. Разновес шатунов в одном двигателе не должен превышать 4 г, излишки металла следует удалить. Для этого на шатуне имеются большие балансировочные подушки на обеих концах шатуна. Желательно добиться минимально возможной массы всех шатунов, удаляя металл с этих подушек и постоянно при этом производя его взвешивание. Изогнутые и даже незначительно деформированные шатуны будут уменьшать мощность двигателя, т.к. они держат поршень под углом, увеличивая трение. Разумеется, обязательно должно быть проверено совмещение шатунов перед сборкой двигателя, а также размер большого отверстия шатуна - если шатун подвергался повышенным нагрузкам или детонации, отверстие в головке шатуна может быть деформировано или увеличено. Также следует проверить шатуны на наличие трещин. Если двигатель предполагается эксплуатировать на высоких оборотах, то лучше подобрать шатуны с отверстием большого конца таким, чтобы оно укладывалось в нижний предел допуска, что увеличивает сжатие шатунного подшипника. Необходимо также обратить внимание на болты шатунов - если эти болты растянулись под нагрузкой, то это ослабит зажим и может привести к проворачиванию вкладышей. Если при разборке двигателя обнаружено, что вкладыши проворачивались, не следует повторно использовать этот шатун.
|